Spreadsheet

 Methods 5N1977
7. Advanced Features and Functions

Contents
Function and Formula Index List 1

1. Create formula using a variety of both Absolute and Relative cell referencing 2
2. Use a selection of statistical functions for example MAXIMUM, MINIMUM, AVERAGE, MEDIAN, MODE, STANDARD DEVIATION, ABS, INT, SQRT, COUNT, COUNTIF 3
3. Use the single condition IF Function with relational operators for example $=,<,<=,>,>=,<>$ 7
4. Use a nested IF functions with a logical operator AND, OR or NOT 10
Nested IF Function 10
IF Function with a Logical Operator AND 12
IF Function with a Logical Operator OR 12
IF Function with a Logical Operator NOT 13
5. Use a financial functions for example Depreciation or Net Present Value 14
6. Use a Lookup function for example the VLOOKUP and HLOOKUP functions 16
7. Perform a calculation using Date and Time functions for example NOW or TODAY. 19
8. References: 22
Function Shortcut List 23

Function and Formula List

STATISTICAL FUNCTIONS
MAX Maximum number in a list 3
MIN Minimum number in a list 4
AVERAGE Average number in a list 4
MEDIAN Middle valued number in a list 4
MODE Most frequently occurring number in a list 4
STDEV Standard Deviation of a list. 5
ABS Absolute Value of a number 5
INT Rounds down to the nearest whole number 5
SQRT Returns the positive square root of a number 6
COUNT Counts the number of cells that contain numbers 6
COUNTIF Counts the number of cells that meet a criteria. 6
LOGICAL FUNCTIONS
IF Simple IF on a logical test with absolute cell referencing 7
IF Simple IF based on text 9
NESTED IF Nested IF FETAC exam results 10
IF with AND Simple IF with logical AND 12
IF with OR Simple IF with logical OR 12
IF with NOT Simple IF with logical NOT 13
FINANCIAL FUNCTIONS
DB Depreciation of an asset over time 14
NPV Net Present Value on investments 15
LOOKUP FUNCTIONS
VLOOKUP Looks up information vertically 16
HLOOKUP Looks up information horizontally 17
LOOKUP Looks up information in matching lists 18
DATE AND TIME FUNCTIONS
TODAY Displays the current date 19
NOW Displays the date and/or time 19
MONTH Returns the month of a cell as a number 20
YEAR Returns the year of a cell as a number 20
WEEKDAY Returns the day of the week in a number 21
DATEDIF Returns the no. of days, months or years between dates. 22

NOTE: See pages 23-26 for a shortcut list on all formula in this unit.

1. CREATE FORMULA USING A VARIETY OF BOTH ABSOLUTE AND RELATIVE CELL REFERENCING

Relative Cell Reference

A relative cell reference consists of the column letter and row number which cross at the cells location for example B2, G34 or a range A2:B6. It can be a single cell or a
 group of cells.

Absolute Cell Reference

Absolute cell reference is also used in formula, functions and charts and identifies the fixed location of a cell or group of cells. Absolute cell referencing works in contrast to relative cell referencing, by making a cell absolute it is prevented from changing when the formula is auto filled i.e. copied and pasted to other cells, so it stays fixed on a specific cell or range.

To make a cell absolute use the dollar sign before the column and row \$C\$6.

Note: An easy way to apply the $\$$ symbol to a cell reference is to click on the cell reference and press the F4 key on the keyboard.

ROW OR COLUMN?

Absolute cell reference can also be used on either the column letter or the row number and does not have to be used on both. In the following example each client must pay according to the rate at $€ 5$. To ensure that the cell C6 is referred to as the formula is dragged down the cells using auto fill the row letter 6 must have absolute cell referencing to prevent it from changing to $\mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9$ and so on.

Absolute Cell Referencing is usually used in conjunction with the Auto Fill feature (discussed in unit 2).

To recap an absolute cell reference is used when we want the computer to always look at a particular cell for information. We make a reference absolute by using the \$ symbol.

Notes:

2. USE A SELECTION OF STATISTICAL FUNCTIONS FOR EXAMPLE MAXIMUM, MINIMUM,

 AVERAGE, MEDIAN, MODE, STANDARD DEVIATION, ABS, INT, SQRT, COUNT, COUNTIF
MAXIMUM FUNCTION

This formula will return the maximum or highest number from the list of numbers in the cell range C1 to C10. This formula can be accessed from the AutoSum drop down menu as shown below.

```
\begin{tabular}{||l|l|}
\hline \(\boldsymbol{\Sigma}\) AutoSum & Sum \\
\(\boldsymbol{\Sigma}\) & Sum \\
& Average \\
& Count Numbers \\
& Max \\
& Min \\
& More Functions... \\
\hline
\end{tabular}
```


MINIMUM FUNCTION

This formula will return the minimum/smallest number from the list of numbers in the cell range C 1 to C 10 . This formula can be accessed from the AutoSum drop down menu.
=MIN(C1:C10)

AVERAGE FUNCTION

The average formula is used to calculate the average of a list of numbers. This formula can be accessed from the AutoSum drop down menu.

=AVERAGE(E2:E3)

MEDIAN FUNCTION

C	D	E
3		
4		
43		
6		
36		
45		
34		
3		
43		
435		
AVERAGE(number1, [number2],		
=AVERAGE(C1:C10)		

Returns the median number, which is the number in the middle of a given set of numbers. Or the Median is the "middle number" (in a sorted list of numbers).

=MEDIAN(G4:G8)

In this example the list would be sorted to $2,7,13,15,16$ as there are 5 numbers on the list the middle number is the $3^{\text {rd }}$ number 13.

For more information on the Median visit - Math is Fun

MODE FUNCTION

The mode function returns the most frequently occurring or repetitive value in a range of numbers.

> =MODE(J3:J8)

For more information on the Mode visit Math is Fun http://www.mathsisfun.com/mode.html

STANDARD DEVIATION FUNCTION

The standard deviation can be explained as 'a quantity expressing by how much the members of a group differ from the mean/average value for the group'. In short it is a measure of how spread out the numbers are from the mean or average.

This is closely linked to the average formula so we use it in the explanation.

The average of the numbers in K12:K16 is 13.6 and the standard deviation from this average is 2.408319. This means that on average the numbers in the list are 2.408319 away from the average number of this list.

For more information on the Standard Deviation visit Math is Fun
http://www.mathsisfun.com/data/standard-deviation.html or Spreadsheet About.com http://spreadsheets.about.com/od/excelfunctions/qt/2010-10-03-Excel-2007-Standard-DeviationFunction.htm

ABS FUNCTION

Returns the absolute value of a number; The absolute value of a number is the number without its sign (e.g. -minus).
=ABS(C17)

The result of $A B S$ on this number is 4.735 .

INT FUNCTION

This formula will return the whole number, when a number with a decimal point is entered. The integer/whole number.

$$
=I N T(C 10)
$$

SQRT FUNCTION

This formula will return the positive square root of the cell number referenced.

$$
\begin{aligned}
& =S Q R T(C 10) \\
& \sqrt{9}=3 \\
& (3)^{2}=9
\end{aligned}
$$

COUNT FUNCTION

This function counts the number of cells that contain numbers and also numbers within the list of arguments. Use COUNT to get the number of entries in a number
 field.

=COUNT(C1:C10)

COUNTIF FUNCTION

The function COUNTIF counts the number of cells within a range that meet the given condition. In this example in the cell range C38:E40 find the number of 7 's (7 is the criteria). The answer is 4 as there are 4 number 7 's in the cell range.

This formula also works on text, in this example the criteria is the word "Cat". There are four words cat in the cell range C38:E40.

Notes: There are many more useful statistical formulae available on the Formulas tab under More Funcions in the Functions Library group and Statistical list. For example look at the SMALL function and the COUNTA.

3. USE THE SINGLE CONDITION IF FUNCTION WITH RELATIONAL OPERATORS FOR EXAMPLE

$$
=,\langle,<=,>,>=,<>
$$

Use the Single Condition IF Example 1 - Simple IF

The IF formula allows the comparison of values and produces an output which can be in a text/number format, in the following example the IF formula will show how many of the staff are due a promotion. We will use the number of years they have been in service for the company and compare this to the cell D5 (value of 5 years) which is the duration anyone needs to serve to gain promotion. This example uses

Absolute Cell Referencing.

$$
=\mid F(B 9>=\$ D \$ 7, \$ E \$ 7, \$ F \$ 7)
$$

To use the IF function either one of two methods can be used, the formula into the cell as follows:

-	A	B	C	D	E	F
4			Employee Promotion			
5						
6				Years	Positive Result	Negative Result
7				9	Promote Now	Promote Later
8	Employee	Years of Service	Result			
9	John	8	=\|F(B9>=\$D\$7,\$E\$7,\$F\$7)			
10	James	4	Promote Later			
11	Larry	3	Promote Later			
12	Kate	9	Promote Now			
13						

OR alternatively use the Insert Function window to add the formula. To access the Insert Function window go to AutoSum (Sigma) > More Functions or click on the Insert Function button on the formula bar (both options shown below).

In this example the logical test is if the years of service of John is greater than 5 years, to check this we use the comparison logical test of B7>D\$5.

The value if true is set to the Positive Result 'Promote Now' or E5 and the value if false is set to the Negative Result 'Promote Later' or F5. In addition Absolute Cell Reference must be used to ensure the cells D5, E5 and F5 are not changed as the formula is dragged down using auto fill. This is applied as shown in the example.

Related Operators of IF

The following operators can all be used in conjunction with the IF formula.

```
= equal to > greater than
< less than
>= greater than or equal to
<= less than or equal to <> not equal to
```

HINT: How to remember the difference between greater than and less than...
< can be changed into 4 - so it is less than 7
$>$ can be changed into 7 - so it is greater than 4
or
< ess for Less

Simple IF Condition Example 2

The IF function introduces the option of decision making into spreadsheets, to do this the formula tests a specified condition to see if it is True or False.
=IF(LogicalTest, ValuelfTrue, ValuelfFalse) IF THE RESULT OF THE LOGICAL TEST IS TRUE THE VALUEIFTRUE ACTION IS COMPLETED, IF THE RESULT IF FALSE THE VALUEIFFALSE ACTION IS CARRIED OUT.

```
=IF(C2>=$G$1,"Pass","Fail")
```

This simple IF function works by checking the logical test is true or false, if the student has got greater than or equal to 60% in their Marks out of 100 they will receive the true value a Pass which is the ValuelfTrue if they get less than 60% the receive the ValuelfFalse which is a Fail.

Note: Words used in formula are included in Inverted Commas e.g. "Pass".

Both the ValuelfTrue and the ValuelfFalse actions can be a formula, a text statement, a numeric value or a blank cell (to show a blank cell for a ValuelfTrue or a ValuelfFalse include """ empty inverted commas).

Notes: Write down other examples of Simple IF you have covered in class.

4. USE A NESTED IF FUNCTIONS WITH A LOGICAL OPERATOR AND, OR or NOT

Nested IF Function

If a question has more than two outcomes we can create a nested IF statement. Within a nested IF statement you can apply the IF formula up to 64 times. Each of the logical tests are applied one at a time, then the next IF's logical test is applied in place of the false value. The final logical tests value is added as the false value.

$$
=I F(B 4>=0.8, " \text { Distinction", IF(B4>=0.65,"Merit",IF(B4>=0.5,"Pass","Fail"))) }
$$

Example: When grading the FETAC assignments the grades are as follows:

Distinction	$80-100 \%$
Merit	$65-79 \%$
Pass	$50-64 \%$
Fail	$0-49 \%$

To check a list of grades for students in a spreadsheet we can use a nested IF function.

In the cell C4 we will create a simple IF function which will check the grade of Kathleen Lee's results. This function can then be auto filled to cell C8 to calculate each student's results.

	$\|c\|$	A	B
1	Relation Database Results Level 6 2010		
2			
	Student Names	Module Results	FETAC Grade
3		78%	
4	Kathleen Lee	65%	
5	Mark O'Grady	34%	
6	Deirdre Monaghan	99%	
7	Thomas Gallagher	74%	
8	Kevin McKenna		
9			

To create the function start with $=\mathrm{if}$ (this will show an IF function guide below the cell. In this question we will start at the highest result and work to the lowest result.

The first part of the function is a logical test, next the value if true for that logical test, to nest a second IF replace the value if false with another IF statement.

The first logical test is the cell reference value compared against $\mathbf{B 4} \boldsymbol{>}=\mathbf{0 . 8 0}$. The value if true is set to the word "Distinction" which will appear as the result (the word is included in inverted commas because it is text).

The second logical test will compare the value in B4 against 0.65 to check if it is greater than or equal to the value 0.65 (the decimal point is used as the value is in percentages). Continue to nest the IF statements inside the original IF statement, remember to close all brackets to ensure the function is correct.

The final result "Fail" is included as the value if false there is only one value if false and this is the final result. The value if false holds true for any other answers/options.

To check the results for the other students use the auto fill to drag the function down to cell C8.

Notes: Write another example of a Nested IF from class examples here.

IF Function with a Logical Operator AND

With an IF statement we can also add an AND function. For example if we want to check that EVERY month our profit is over $€ 100$ we can use the following formula (we are checking Jan is over $€ 100$ AND Feb is over $€ 100$ AND March is over $€ 100$ AND April is over $€ 100$).
=IF(AND(C18>100,C19>100,C20>100,C21>100),"Over Target","Below Target")

In this example we have nested the AND function inside the logical test of the IF. It is important to know that this will only give the true value if all of the logical arguments evaluate to True. If only one from many logical tests inside the AND(...) evaluate to False and the rest are True, the AND Function will return the False value.

Here we have 4 logical tests, it is normal to have only 2 logical test but Excel 2007 \& 2010 software the AND function can contain a maximum of 255 expressions (logical tests).

IF Function with a Logical Operator OR

Within an IF statement we can also add an OR function. Let's now suppose we want to check that at least ONE member of a sales team met the company target of $€ 18,000$. To do this we use an OR logical function inside the IF logical test as shown here.
$=I F(O R(C 27>=18000, C 28>=18000, C 29>=18000), " T a r g e t$ Reached","Target Missed")

	E2	-	$f_{\mathbf{x}} \quad=\mathrm{IF}(\mathrm{OR}(\mathrm{C} 27$	$=180$	0,C28>=18000,C2		ach		d")
	A	B	C	D	E	F	G	H	I
24	Simple IF with OR								
25									
26		Staff Members	Sales Target	Months taraget is $€ 18,000$					
27	Mary		€15,000.00						
28	Thomas		$€ 18,000.00$		Target Reached				
29 30	John		€17,200.00						

Only one of the members of staff on the sales team has to reach the target of $€ 18,000$ for the $\mathbf{O R}$ function to succeed (see the sales target for Thomas in cell C28). In Excel 2007 \& 2010 software the OR function can contain a maximum of 255 expressions (logical tests).

IF Function with a Logical Operator NOT

The NOT function can also be used inside an IF statement there are two ways of using the not function. In the following example if the Result is not greater than the Pass Mark then a Fail is shown. There is only one logical test in the NOT function.

```
=IF(NOT(C38>=D38),"Fail","Pass")
```

E38		-	f_{x}	=IF(NOT(C38>=D38),"Fail","Pass")		
4	A	B		C	D	E
35	Simple IF with NOT					
36						
37	Student	Exam	Result		Pass Mark	Pass or Fail?
38	Mary	English		45	70	Fail
39	Sinead	German		65	50	Pass
40	Ronan	Biology		79	60	Pass
41	Brian	Maths		45	40	Pass
42						

Notes: Write examples of IF statements with AND, OR or NOT logical tests.

5. USE A FINANCIAL FUNCTIONS FOR EXAMPLE DEPRECIATION OR NET PRESENT VALUE

DEPRECIATION FUNCTION

The monetary value of an asset decreases over time due to use, wear and tear or obsolescence, this can be described as depreciation. There can be caused by a number of factors which affect depreciation such as market conditions and objects which could be affected by depreciation include premises, machinery, equipment and vehicles. Accounts estimate the decrease in value using the information regarding the useful life of the asset.

```
=DB(cost,salvage,life,period,[month]) Depreciation of an asset over time.
=DB($E$5,$E$6,$E$7,1)
```

The DB function requires four arguments with the option of the month as a fifth arguments. These are:

cost	Purchase Price of the asset.
salvage	Disposal Value of the asset.
life	Number of years over which the asset is depreciated.
period	Year number.
month (optional)	Month number in that year. If the month is omitted it is assumed to be 12.

Example in this example the depreciation of a company van over 5 years is calculated for each year.

		VLOOKUP - $\times \checkmark{ }_{\mathbf{x} \boldsymbol{x}}=\mathrm{DB}(\$ \mathrm{E}$ \$5,\$E\$6,\$E\$7,1)			
4	A	B	C	D	E
4					
5	Asset	Company Van		Purchase Price	€ 20,000.00
6				Disposal Price	$€ 5,000.00$
7				Expected Life (years):	5
8		=DB(\$E\$5,\$E\| $\$ 6, \$ \mathrm{E} \$ 7,1)$			
9	Year 1 Depreciation			after year 1	$€ 15,160.00$
10	Year 2 Depreciation	- DB(cost, salvage, life, period, [month]) r 2			€11,491.28
11	Year 3 Depreciation	€2,780.89 Value after year 3			€8,710.39
12	Year 4 Depreciation	$€ 2,107.91$	Value after year 4		$€ 6,602.48$
13	Year 5 Depreciation	$€ 1,597.80$	Value after year 5		$€ 5,004.68$
14					

The sum of each of the $\mathbf{5}$ years depreciation and the disposal price should be approximately the total value of the purchase price.

NET PRESENT VALUE FUNCTION

The NPV (Net Present Value) is a financial function that business analysts use to judge the viability of new projects or investments schemes with set or variable returns. To calculate the NPV: the present value of an investment based on expected income from that investment in future years minus the cost of the project. Net present value is calculated by dividing the expected income of a project in each future year by a term equal to one plus a discount rate raised to a power equal to the year. The totals for each year then are added together, and the initial cost of the project is subtracted from that sum to arrive at the net present value. The discount rate represents the time value of money: the amount that could be made by committing the money to other opportunities.
=NPV(rate,value1,[value2],...)
=NPV(A39,A41,A42,A43,A44,A45)+A40

The NPV returns the net present value of an investment
based on a discount rate and a series of future payments (negative values) and income (positive values).

The NPV function requires two arguments with the 254 additional arguments as optional. The arguments are:

Rate	The rate of discount over the length of one period.
value1	Value1 is required and any subsequent values are optional.
value2	There can be up to 254 arguments representing the payments and income.
The value arguments can be entered as a range. NPV uses the order of value1, value2,... to interpret the order of cash flows. Be sure to enter your payment and income values in the correct sequence.	

Example in this example an annual discount rate of 0.08 is applied to an investment of $€ 40,000$, with five years' worth of returns.

	A47	\checkmark fx	=NPV(A39,A41:) + A 40	
,		A	B	C	D
38	Data		Description		
39		0.08	Annual discount rate		
40		€ 40,000.00	Initital cost of investment		
41		€8,000.00	Return from first year		
42		€9,200.00	Return from second year		
43		€10,000.00	Return from third year		
44		€12,000.00	Return from fourth year		
45		€14,500.00	Return from fifth year		
46 Formula			Description	Live Result	
47	$€ 1,922.06$. Net present value of this investment.				
12					

6. USE A LOOKUP FUNCTION FOR EXAMPLE THE VLOOKUP AND HLOOKUP FUNCTIONS

VLOOKUP FUNCTION (VERTICAL LOOKUP)

A VLOOKUP function looks for a value in the leftmost column of a table, and then returns the value in the same row from a column specified. By default, the table must be sorted in an ascending order for the VLOOKUP to work. To use the VLOOKUP the data should be stored with the headings in the topmost row of the array.

```
=VLOOKUP(lookup_value,table_array,col_index_num,range_lookup)
=IF(NOT(C38>=D38),"Fail","Pass")
```

lookup_value	The value to be found in the first column of the table.
table_array	The table of data, where the information is retrieved from.
col_index_num	The column number in the array where the matching value should be returned from.
range_lookup	Logical value to find the closet match TRUE. Logical value to find the exact match FALSE.

To create a VLOOKUP it is best to first name the table_array range (see LO2 page 4 - this will mean the array is automatically absolutely cell referenced).

Example in this question there is a list of mobile phones and the relevant details for each phone, from cells A19:D28. This has been set to a named range MobilePhone. In cell G25 the VLOOKUP formula takes the mobile phone ID Number (cell G23) which is the lookup_value and searches this number in the first column of the table_array MobilePhone. When it finds the matching ID Number the corresponding information from the col_index_num column index number is displayed. The column index number is counted in numbers (not in column letters) in this the information from column 2 is displayed, the Product name. If FALSE is set as the range_lookup an exact example match will be sought by the formula. If no exact match is found the formula the error \#N/A is displayed which means no matching lookup value was found in the table array.

HLOOKUP FUNCTION (HORIZONTAL LOOKUP)

A HLOOKUP function looks for a value in the top row of a table, and then returns the value in the same column from the row specified. To use the HLOOKUP the data should be stored with the headings in the leftmost column of the array.

```
=HLOOKUP(lookup_value,table_array,row_index_num,range_lookup)
=HLOOKUP(C41,MobilePhones,2,FALSE)
```

To create a HLOOKUP it is best to first name the table_array range (see LO2 page 4 - this will mean the array is automatically absolutely cell referenced).

Example in this question there is a list of mobile phones and the relevant details for each phone, from cells A35:E38. This has been set to a named range MobilePhones. In cell C43 the HLOOKUP formula takes the mobile phone ID Number (cell G41) which is the lookup_value and searches this number in the top row of the table_array MobilePhones. When it finds the matching ID Number the corresponding information from the row_index_num row index number is displayed. The row index number is counted in numbers in this example the information from row 2 is displayed, the Product name. If FALSE is set as the range_lookup an exact match will be sought by the formula. If no exact match is found the formula the error \#N/A is displayed which means no matching lookup value was found in the table array.

Notes: Write a note on the difference in the functions HLOOKUP and VLOOKUP here...

LOOKUP FUNCTION

A LOOKUP function looks up a value either from a one-row or one-column range or from an array and returns a value from the same position in a second row or column range. The LOOKUP function has been included for backward compatibility and the VLOOKUP and HLOOKUP are more commonly used.
=LOOKUP(lookup_value,lookup_vector,result_vector)
=LOOKUP(G9,A6:A14,B6:B14)

Example in this example we have mobile phones listed by their Order ID, Product Name, Unit Price and Quantity in Stock. Using the Lookup function the ID Number can be used by searching the A column to find the Product Name.

Cell G9 is used to store the ID Number which value being searched for, this is known as the lookup value. The Product Name will be shown in G7 so the formula will go in here. The lookup value is found in the look up vector. In this example the lookup vector is the list of Order ID numbers (cell range A6 to A14). The result vector shows the list where the answer will come from Product Names cell range B2 to B11.

Note: A lookup will not work if the information is not sorted according to the result vector and if the lookup value is not on the list the lookup function will return the nearest lowest value.

Task: LOOKUP Revision Questions

Q 1 What are the FIRST two things that should be done to data before using a LOOKUP function?

Q 2 Write an example of a LOOKUP formula here:
Q 3 Name the three types of LOOKUPS:
a.
b.
c.

Q 4 Write an example of a VLOOKUP formula here:

7. PERFORM A CALCULATION USING DATE AND TIME FUNCTIONS FOR EXAMPLE NOW OR TODAY

There are a number of date functions available in Excel. Two commonly used functions take their date from the computer clock, which means that if your computer clock is showing the wrong date or time your formula will too. These functions are

TODAY FUNCTION

$=T O D A Y() \quad$ Displays the current date.

NOW FUNCTION

=NOW() Displays the date and/or time depending on formatting.

For both of these functions there are no arguments, enter them into the required cells and they will display current date and time. These functions update when the worksheet is calculated i.e. when the worksheet is reopened.

To access common Date and Time functions go to the formula bar and click on the Date \& Time button.

Note: Computers store dates as a number representing the number of full days since midnight January 1, 1900, plus the number of hours, minutes and seconds for the current day. This is called the serial number.

To view the serial number as a date you should format the number to the required date category format.

Note: The TODAY() and NOW() functions change only when the worksheet is calculated (a worksheet is recalculated each time it is opened). They are not updated continuously. The date and time used are taken from the computer's system clock.

Perform Calculations on Dates and Times

Calculations can be completed on dates and times because they are stored as a number.

To calculate the number of days between two dates in Days:

TAKE TWO DATES FROM EACH OTHER

1. Type in two dates and set them both to date format.
2. Use a formula =B4-C4 to take the largest date from the smallest date.
3. Ensure the formula cell E4 is set to General format to allow the answer to be displayed as a number.

MONTH FUNCTION

To calculate the difference between two dates in Months in the same year:

=MONTH(Cell Ref) TAKE TWO MONTHS FROM EACH OTHER

1. Type in two dates and set them both to date format. For this formula to work ensure the dates are both in the same year.
2. Use the formula $=\mathbf{M O N T H}(\mathbf{C 4})-\mathrm{MONTH}(\mathrm{B} 4)$ to take the largest date from the smallest date.
3. Ensure the formula cell is set to General format to allow the answer to be displayed as a number.

YEAR FUNCTION

To calculate the difference between two dates in Years:

=YEAR(Cell Ref) TAKE TWO YEARS FROM EACH OTHER

1. Type in two dates and set them both to date format.
2. Use the formula $=\mathbf{Y E A R}(\mathbf{C 4})-\mathrm{YEAR}(\mathbf{B 4})$ to take the largest date from the smallest date.
3. Ensure the formula cell is set to General format to allow the answer to be displayed as a number.

To calculate the difference between two dates in months from different years we use a combination of the above date formula.

DIFFERENCE IN MONTHS BETWEEN DATES

$=($ YEAR(Cell Ref)-YEAR(Cell Ref))*12+MONTH(Cell Ref)-MONTH(Cell Ref)

1. Type in two dates and set them both to date format.
2. Use the formula $=(\mathrm{YEAR}(\mathrm{C} 4)-\mathrm{YEAR}(\mathrm{B} 4))^{*} \mathbf{1 2 + M O N T H}(\mathrm{C} 4)-\mathrm{MONTH}(\mathrm{B} 4)$
3. Ensure the formula cell is set to General format to allow the answer to be displayed as a number.

This formula works by finding the number of years, multiplying this by 12 and adding the number of months.

D4		$\rightarrow f_{x}$	$=(\mathrm{YEAR}(\mathrm{A} 4)-\mathrm{YEAR}(\mathrm{B} 4))^{*} 12+\mathrm{MONTH}(\mathrm{A} 4)-\mathrm{MONTH}(\mathrm{B} 4)$			
4	A	B	C	D	E	F
4	21 January 2012	16 October 2011	Number of Months	3		
5						
6						
7						

WEEKDAY FUNCTION

=WEEKDAY(Cell Ref) RETURNS THE DAY OF THE WEEK IN A NUMBER

The WEEKDAY function returns the day of the week based on one date in a cell reference. Each day is represented as a number with the week starting on Sunday as 1 , Monday as 2, etc.

D18		f_{x}	=WEEKDAY(A18)	
	A	B	C	D
17				
18	$13 / 01 / 2012$	Weekday as a Number		
19	$12 / 01 / 2012$	Weekday as a Number	6	
20			5	

Note: If you wanted to display the day as the actual day 1 = Sunday, 2 = Monday, etc. you could add the use of a Nested IF formula or a Lookup.

DATED IF FUNCTION

=DATEDIF(StartDate, EndDate, Unit)

The DATEDIF function can be used to calculate the number of days between dates.

1. The first cell reference is the final date.
2. The second cell reference is the most recent date.
3. The unit can used to find the number of days (" d "), number of months (" m ") and number of years (" y ").

D14		f_{x} =DATEDIF(B14,A14,"d")		
T	A	B	C	D
14	16 Dec 2011	08 Jan 1982	Days d	10934
15			Months m	359
16			Years y	29

Note: An interesting about thing about the DATEDIF function is that it is an undocumented function which means that while it works, it is not listed under the formula tab in Excel. Therefore it must be typed manually into a cell and not with the dialog box available for other functions.

8. REFERENCES:

Maths is Fun

http://www.mathsisfun.com/mode.html

Spreadsheet About.com

http://spreadsheets.about.com/od/excelfunctions/at/and function.htm

Depreciation Formula

http://www.excel-easy.com/examples/depreciation.htm|

NPV

http://office.microsoft.com/en-ie/excel-help/npv-function-HP010342728.aspx

FUNCTION SHORTCUT LIST ACCORDING TO FUNCTION LIBRARY GROUPS

Math \& Trig Functions

Function Name	Action	Example (single range)	Example (multiple ranges)
SUM	Add numbers in a range of cells or multiple ranges.	$=S U M(B 4: B 15)$	=SUM (B4:B15,E4:E15)
ABS	Returns the absolute value of a number; The absolute value of a number is the number without its sign (e.g. -minus).	=ABS(C17)	Not applicable to a range.
INT	This formula will return the whole number, when a number with a decimal point is entered (rounding down).	$=\operatorname{INT}(\mathrm{C} 10)$	Not applicable to a range.
SQRT	This formula will return the positive square root of the cell number referenced.	=SQRT(C10)	Not applicable to a range.
POWER	Calculates the result of a number raised to a power. Can be used to calculate the radius of a circle.	$=P O W E R(2,3)$	$2 \times 2 \times 2$ is 2^{3}
SUMIF	Adds cell values in a range if they satisfy a given condition.	=SUMIF(A2:A7, ">300", B2:B7)	Adds data in column B where the value in column A is greater than 300 .

Statistical Functions

Function Name	Action	Example (single range)	Example (multiple ranges)
MAX	Finds the highest number in a range of cells or multiple ranges.	$=\mathrm{MAX}(\mathrm{B4}$:B15)	$=\mathrm{MAX}(\mathrm{B4}: \mathrm{B15}, \mathrm{E} 4: \mathrm{E} 15)$
MIN	Finds the lowest number in a range of cells or multiple ranges.	$=\mathrm{MIN}(\mathrm{B4}: \mathrm{B} 15)$	$=\mathrm{MIN}(\mathrm{B4}: \mathrm{B} 15, \mathrm{E} 4: \mathrm{E} 15)$
AVERAGE	Calculates the average of numbers in a range of cells or multiple ranges.	=AVERAGE(B4:B15)	=AVERAGE(B4:B15,E4:E15)
MEDIAN	Returns the median number, which is the number in the middle of a given set of numbers.	$=$ MEDIAN(G4:G8)	=MEDIAN(G4:G8,I4;18)
MODE	The mode function returns the most frequently occurring or repetitive value in a range of numbers.	$=\mathrm{MODE}(\mathrm{J} 3: \mathrm{J} 8)$	=MODE(J3:J8,K3:K5)
STDEV	A measure of how spread out the numbers are from the mean or average.	$=S T D E V(K 12: K 16)$	$=$ STDEV(K12:K16,L10:L15)
COUNT	Counts the number of cells containing numbers in a range of cells or multiple ranges.	=COUNT(B4:B15)	$=C O U N T(B 4: B 15, E 4: E 15)$
COUNTIF	Count the number of cells in the range which contain a certain criteria.	$\begin{aligned} & =C O U N T I F(C 4: C 11, " C o m p u t e r ") \\ & =C O U N T I F(C 4: C 11, A 14) \end{aligned}$	Counts the number of cells that contain the word "Computer" in the range C4:C11.
COUNTA	Counts the number of cells containing numbers or text in a range of cells or multiple ranges.	=COUNTA(B4:B15)	=COUNTA(B4:B15,E4:E15)

Financial Functions

Function Name	Action	Example (single range)	Example (multiple ranges)
DB	Calculates the depreciation of an asset over a number of years, using the declining balance method.	$=D B(\$ E \$ 1, \$ E \$ 2, \$ E \$ 3,1)$	E1 is Purchase Price
	The NPV returns the net present value of an investment based on discount rate and a series of future payments (negative values) and income (positive values).	E3 is Expected Life	

? Logical Functions

Function Name	Action	Example
IF	The IF formula allows the comparison of values and produces an output which can be in a text/number format.	$\begin{aligned} & =I F(B 9>=\$ D \$ 7, \$ E \$ 7, \$ F \$ 7) \\ & =I F(C 2>=\$ G \$ 1, " P a s s ", " F a i l ") \end{aligned}$
NESTED IF	Like and IF statement and in addition to this, if a question has more than two outcomes we can create a nested IF statement.	$=I F(B 4>=0.8$, "Distinction", IF(B4>=0.65,"Merit",IF(B4>=0.5,"Pass","Fail")))
IF AND	Inside an IF function an AND function can be used to compare two logical tests or criteria.	=IF(AND(C18>100,C19>100,C20>100,C21>100),"Over Target","Below Target")
IF OR	Inside an IF function an OF function can be used to check one logical test or another one is correct.	=IF(OR(C27>=18000,C28>=18000,C29>=18000),"Target Reached","Target Missed")
IF NOT	Used inside an IF function the NOT function can be used to check that a criteria is not true.	=IF(NOT(C38>=D38),"Fail","Pass")

Lookup \& Reference

| Function Name | Action | Example |
| :--- | :--- | :--- | :--- |
| VLOOKUP | Looks up data vertically across columns and returns a corresponding value based on a
 lookup value and the row specified. | $=$ IF(NOT(C38>=D38),"Fail","Pass") |
| HLOOKUP | Looks up data horizontally down columns and returns a corresponding value based on a
 lookup value and the column specified. | $=$ HLOOKUP(C41,MobilePhones,2,FALSE) |
| LOOKUP | Looks up a value either from a one-row or one-column range or from an array and returns
 a value from the same position in a second row or column range. | $=$ LOOKUP(G9,A6:A14,B6:B14) |

Date \& Time

Function Name	Action/Explanation	Example
TODAY	Inserts todays date into the cell, ensure to format the cell to display the date appropriately. Remember if a date shows as a number this is the serial number of the date. No arguments are required for this function.	Display the time and/or the date, depending on the cell formatting chosen. No arguments are required for this function.
NOW	Takes the month from a date formatted cell and represents it as a number. This function is usually used alongside other date functions. MONTH	Used to take the year from a date formatted cell and represents is as a number. This function is usually used alongside other date functions.
YEAR	Returns the day of the week as a number. With 1 = Sunday, 2 = Monday, etc. Can be used alongside a nested if to show the day of the week.	$=$ =WEEKDAY(C18)

